

Energy Efficiency in the Carbon Fiber Conversion Process

Presented at JEC 2012 Paris, France March 27, 2012 14:30

About Harper

- Headquartered outside of Buffalo, NY
- Established in 1924
- 45,000 ft² manufacturing facilities
- 5,500 ft² dedicated Technology Center
- Multi-disciplined engineering talent
 - Chemical
 - Ceramic
 - Mechanical
 - Electrical
 - Industrial

arper

Systems integration

Harper Technical Profile

Core Skills:

Scale up of New or Challenging Processes

- 200 C 3000 C
- Atmospherically Controlled
- Continuous Processing
- Construction Techniques in
 Metallic > Ceramic > Graphitic
- Integrated Systems Design Plant Supply
- Complex Flows of Advanced Materials
- Precise Control of Gas Solid Interactions

Carbon Fiber Market Advanced Thermal Systems for Fiber Processing

- PAN based C-fiber
- Pitch based C-fiber
- Rayon based C-fiber
- Alternative Precursor Development
- Carbon Fiber Recycling

A Broad Experience Base in a Range of Carbon Processes

Services to the Carbon Fiber Market

- Equipment Supply (~40 Years)
 - LT Furnaces, HT Furnaces and UHT Furnaces
 - Next-Generation Oxidation Ovens
 - Surface Treatment & Drying
 - Material Mass Transport & Waste Gas Treatment
- Complete System Supply (~15 Years; >10 contracts)
 - Systems Integration and Energy Recovery
- Feasibility Studies & Modeling
- Retrofits, Revamps & Upgrades
- Business Development & Consulting
- Training & Optimizations

Presents

Creating a Roadmap for Greater Efficiency in Process Integration and Systems Supply

Another innovation from Harper

Harper Beacon – Development Rationale

Systems Integration – Historical Perspective:

- Late 1990s Development of Systems Integration Offerings
- 1998 2006 Execution of First Integrated Production Projects

Carbon Fiber Systems Scale of Operations

Harper International CF Line Full Line Scope of Supply

Leaders in the Supply of Complete Carbon Fiber Systems

Harper Beacon – Development Rationale

Systems Integration – Historical Perspective:

- Late 1990s Development of Systems Integration Offerings
- 1998 2006
- 2008 2009

Development of Systems Integration Offerings Execution of First Integrated Production Projects <u>Harper Unveils Ox Oven for Energy Recovery</u> Harper Develops Process Based Cost Modeling; Predictive Roadmap for Scale Up; Harper Presents Predictions at InterTech Pira and Composites World (<u>www.harperintl.com/resources</u>)

Harper International Leading Energy Efficiency in Oxidation

Performance Metrics

- Temperature (+ or 2 C)
- Velocity (2x 3x More)
- Seal Performance (Absolute)
- Construction Techniques (Modular)
- Inst. & Control Advances (Flow Control)
- Heat Reutilization > 75%

(Efficiency, Guaranteed)

Carbon Fiber Business Model & Cost Analysis

Specific Cost - Cummulative

→ PRECURSOR → CAPEX → → INFRASTRUCTURE → ★ TOTAL COST → OPEX

Cost Dynamics as a Function of Scale-Up

Harper Beacon – Development Rationale

Systems Integration – Historical Perspective:

Late 1990sDevelopment of Systems Integration Offerings1998 – 2006Execution of First Integrated Production Projects2008 - 2009Harper Unveils Ox Oven for Energy RecoveryHarper Develops Process Based Cost Modeling;Predictive Roadmap for Scale Up; Presents
Predictions at InterTech and Composites2010
R&DWorld

Unveils MicroLine at InterTech Pira Industry Expansions follow Predicted Path Single Line Capacities Approach Asymptote

Carbon Fiber Systems Scale of Operations

Scales	Size Range (mm Width)	Capacity	
Production	1000mm-4200mm	100tpy to more than 4000tpy	
Industrial Scale Pilot	300mm-1000mm	20tpy-100tpy	
Micro Scale (University, Institute)	<100mm	Less than 1tpy	
			- \

Helping Clients with Carbon Fiber Business Model & Cost Analysis

Production Rate vs Velocity

Capacity Expansion 2011 Based on Faster Line Velocities; Higher Production Rates from 3m Single Muffle

Beacon

Harper Beacon – Development Rationale

Systems Integration – Historical Perspective:

- **Development of Systems Integration Offerings** Late 1990s
 - **Execution of First Integrated Production Projects**
- 2008 2009

1998 - 2006

2010 R&D

- World

2011

2012

Harper Unveils Ox Oven for Energy Recovery Harper Develops Process Based Cost Modeling; Predictive Roadmap for Scale Up; Presents Predictions at InterTech and Composites Harper Develops MicroLine Product for

Unveils MicroLine at InterTech Pira

Industry Expansions follow Predicted Path

Single Line Capacities Approach Asymptote

Develop Tools Needed for Higher Efficiency and Consumer Market Impact;

2012 Harper Beacon is Launched

Harper Beacon

Challenges:

- 1) <u>Diminishing Returns</u>: The Opportunity for Increased Efficiency In Scale is Declining
- 2) <u>Consumer Market Adoption</u>: At Higher Volumes a Better Understanding of Environmental Impact is Required (Automotive)

Opportunities:

- 1) <u>Create Tool</u> to Rank Environmental Impact of Various Production Schemes
- 2) <u>Understand Impact of Scale and Configuration on Environmental</u> as well as Cost
- 3) <u>Use the Tool to Identify</u> Opportunities for Greater Total Efficiency

Carbon Fiber Conversion Process Beacon Evaluates Impact of Total Operations

Harper Beacon: Inputs

Harper's Process-Based Cost Model

Cost Factors:

41 Variables in Core Cost Model

Line Sizing Factors:

arper

41 Variables in Core Cost Model

Harper Beacon: Inputs

Waste Gas Treatment Configuration:

15 Variables

Energy Source: 15 Variables

Theoretical Factors: 10 Variables

Environmental Losses: 30 Variables

Beacon Comprehensively Evaluates 152 Variables

Waste Gas Treatment Systems

Beacon Evaluates Impacts of System Selection:

- Direct Fired TO
- Multi-Stage Direct Fired TO
 - Regenerative TO

Images Courtesy of ANGUIL Environmental

Beacon Quantifies and Evaluates:

Heat Recovery NOx Generation Environmental Losses Carbon Dioxide Emission HCN Destruction Efficiency all as a Functions of Scale

Waste Gas Treatment Systems: Influents

Sources of Off Gas - Categories:

1. Process Off Gases

Oxidation Oven Thermal Chamber Exhaust

LT Muffle Exhaust

HT Muffle Exhaust

2. Vent Hood Off Gases

Collection at Oxidation Oven Slots (Seal Design, Vestibules or Hoods) Hoods at LT Muffle and HT Muffle; Entrance and Exit

3. Auxiliary Off Gases

Collection at Oxidation Oven Slots (Seal Design, Vestibules or Hoods) Dryer Exhaust; Hoods at Pretreatment, Surface Treatment

4. General Plant HVAC

5. MCC, Electrical & Control Room HVAC

Waste Gas Treatment Systems: Effluents

Typical Emission Limits:		
Total organic C	< 20 - 50	mg/Nm³
CO	< 100 - 200	mg/Nm ³
NOx	< 200	mg/Nm³
SOx	<100 - 200	
mg/Nm³		
HCN	< 2 - 5	mg/Nm³
NH3	< 30	mg/Nm³
Particulates, Dust	< 100	mg/Nm³
TAR	< 50	mg/Nm³

Regenerative Thermal Oxidizer

Direct Fired Thermal Oxidizer

Waste Gas Treatment Systems: Effluents

Hydrogen Cyanide (HCN)

Immediately Dangerous to Life & Health

Silicone

• Will convert to Silica (SiO₂)

Nitrogen Oxides (NO_x)

Green House Gas Emissions

Carbon Dioxide (CO₂)

• From Natural Gas Combustion and From Waste Gas Abatement

Tar, Hydrocarbons & Ammonia

Sulfur Oxides (SOX) & Other Species

Concern for Alternative Precursors

CO2, NOx, HCN and NH3 Modeled With Beacon

Harper Beacon: Outputs Quantifies Environmental and Energy Efficiency

Cost Model Outputs:

CAPEX and OPEX Per Unit Operation for Various Line Configurations.

Outputs Tailored to Specific Site Conditions and Client Circumstances

Carbon Footprint:

kg/hr of Carbon Dioxide Per kg of CF

Compares to Theoretical Minimum as Benchmark of Efficiency

Comprehensive Function

For a Full List of Capabilities Consult Harper

Harper Beacon: Outputs Quantifies Environmental and Energy Efficiency

Nitrogen Oxides Emissions:

kg/hr of Nitrogen Oxides Per kg of CF Varies with Selection of Waste Gas Abatement and Line Configuration

Impact of HCN Destruction:

CAPEX, OPEX and Environmental Impacts of Achieving Lower Levels of HCN.

Evaluate Trade of of Lower HCN and Higher CO2

Thermal Losses:

kWh of Losses as a function of Scale and Operating Paramenters.

Allows for Quantification of Anticipated Thermal Losses and Design Optimization

For a Full List of Capabilities Consult Harper

Harper Beacon

Carbon Dioxide Emissions:

- Expressed in total kg/hr of CO2 Emitted and kg/hr of CO2 Per kg of CF
- Compare to Theoretical Minimum. <u>Baseline Value based on</u>:
 - Carbon Recovery of Feedstock
 - Specific Heat to Reach Process Temperatures
- Comparison of Carbon Emission to Theoretical Limit Provides a
 Metric for Optimization and Continued Process Refinement

Harper Beacon

Carbon Dioxide Emissions:

Harper Thanks Anguil for Support of Beacon

ANGUIL ENVIRONMENTAL SYSTEMS, INC. Innovative Air Pollution Control Solutions

- Over 35 Years of Experience in the Oxidizer Industry and 1,700 Installations
- Numerous Installations on Carbon Fiber Emissions Using Various Oxidizer Technologies

- Fabrication, Installation and Service
 Capabilities in Asia, Europe and North America
- Financially Sound Supplier Focused on Engineered Solutions for Emission Abatement

Harper International Thanks You for Your Attention

Visit Harper at Booth T51

Learn More About Beacon at <u>www.harperbeacon.com</u>

Contact us at <u>info@harperintl.com</u> or <u>rblackmon@harperintl.com</u> to schedule an evaluation and learn how Beacon can help you along the path to efficiency.

Harper International Presentation JEC 2012, March 27, 2012 14:30

Harper

Technical Appendix

Emissions Model Outputs

Sample Modeling Inputs

RTO NG Consumption (Nm3/h of NG Per Nm3/h of Feed

larper

DFTO w/ 2 Stage HR (Nm3/h of NG Per Nm3/h of Feed)

larper

MSDFTO w/ 2 Stage HR (Nm3/h of NG Per Nm3/h of Feed

larper

CO2(kg/hr) vs NG (Nm3/hr)

Emissions Model Outputs

Sample Results from Beacon Model www.harperbeacon.com

		1	2	3	4	5	6
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm					
Line Width	mm	3,000mm Wide	3,000mm Wide	3,000mm Wide	1,750mm Wide	3,000mm Wide	3,000mm Wide
Annual Capacity	TPY	2,250 TPY Line	1,500 TPY Line	1,000 TPY Line	1,000 TPY Line	2,250 TPY Line	2,250 TPY Line
Waste Gas Configuration	0						10X2 R10
Het Recovery Used	?						
Theoretical Minimum Power Input	kWh Per kg CF	4.55	5.23	6.07	4.99	4.55	4.55
Theoretical Minimum Total CO2 Emission	kg/hr CO2 Per kg CF	2.3	2.5	2.6	2.4	2.3	2.3
Theoretical Thermal Losses	kWh Per kg CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	kg / hr CF	312.5	208.3	138.9	138.9	312.5	312.5
Operating Power Input	kWh Per kg CF	27.3	31.3	34.0	37.8	23.0	43.8
Operating Total CO2 Emission	kg/hr CO2 Per kg CF	9.7	10.9	11.9	12.5	12.6	12.7
Operating Thermal Losses	kWh Per kg CF	10.1	10.9	11.7	12.1	10.2	11.0
Operating Total CO2 Emission	kg/hr CO2	3039.3	2274.6	1652.6	1749.3	3949.5	3972.0
CAPEX	USD \$ / kg CF	\$2.18	\$2.89	\$3.73	\$2.47	\$2.33	\$2.17
OPEX	USD \$ / kg CF	\$6.27	\$7.81	\$9.85	\$8.37	\$6.64	\$7.43

		7	8	9	10	11	12
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm
Line Width	mm	1,750mm Wide	3,000mm Wide	3,000mm Wide	3,000mm Wide	3,000mm Wide	3,000mm Wide
Annual Capacity	TPY	750 TPY Line	2,250 TPY Line	1,500 TPY Line	1,500 TPY Line	1,500 TPY Line	1,000 TPY Line
Waste Gas Configuration	2					10X2 R10	
Het Recovery Used	ſ						HEAT RECOVERT
Theoretical Minimum Power Input	kWh Per kg CF	5.53	4.55	5.23	5.23	5.23	6.07
Theoretical Minimum Total CO2 Emission	kg/hr CO2 Per kg CF	2.5	2.3	2.5	2.5	2.5	2.6
Theoretical Thermal Losses	kWh Per kg CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	kg / hr CF	104.2	312.5	208.3	208.3	208.3	138.9
Operating Power Input	kWh Per kg CF	37.3	25.6	26.3	29.3	47.8	28.4
Operating Total CO2 Emission	kg/hr CO2 Per kg CF	12.7	12.8	13.8	14.0	14.1	14.7
Operating Thermal Losses	kWh Per kg CF	12.3	10.3	11.0	11.1	11.7	11.9
Operating Total CO2 Emission	kg/hr CO2	1324.5	4024.3	2878.3	2929.1	2940.8	2048.3
		¢2.05	¢0.00	¢2.05	¢2.40	¢0.00	¢2.02
CAPEX	ע מסט אין kg cr	\$2.90	ΫΖ.3 δ	\$3.00	\$3.1Z	\$ 2.00	\$3.9Z
OPEX	USD \$ / kg CF	\$9.54	\$6.77	\$8.15	\$8.29	\$8.97	\$10.15

		13	14	15	16	17	18
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm
Line Width	mm	3,000mm Wide	1,750mm Wide	1,750mm Wide	3,000mm Wide	1,750mm Wide	1,750mm Wide
Annual Capacity	TPY	1,000 TPY Line	1,000 TPY Line	750 TPY Line	1,000 TPY Line	1,000 TPY Line	750 TPY Line
Waste Gas Configuration		TOX1 TOX2	TOX1	TOX1	TOX2 RTO	TOX1 TOX2	TOX1 TOX2
Het Recovery Used	?	HEAT RECOVERY	HEAT RECOVERY	HEAT RECOVERY		HEAT RECOVERY	HEAT RECOVERY
Theoretical Minimum Power Input	kWh Per kg CF	6.07	4.99	5.53	6.07	4.99	5.53
Theoretical Minimum Total CO2 Emission	kg/hr CO2 Per kg CF	2.6	2.4	2.5	2.6	2.4	2.5
Theoretical Thermal Losses	kWh Per kg CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	kg / hr CF	138.9	138.9	104.2	138.9	138.9	104.2
Operating Power Input	kWh Per kg CF	31.8	32.9	32.0	50.5	35.7	35.1
Operating Total CO2 Emission	kg/hr CO2 Per kg CF	15.0	15.1	15.2	15.2	15.4	15.4
Operating Thermal Losses	kWh Per kg CF	12.0	12.3	12.4	12.6	12.3	12.5
Operating Total CO2 Emission	kg/hr CO2	2084.1	2110.4	1589.6	2120.1	2140.9	1614.4
CAPEX	USD \$ / kg CF	\$4.00	\$2.64	\$3.14	\$3.72	\$2.71	\$3.23
OPEX	USD \$ / kg CF	\$10.30	\$8.65	\$9.79	\$11.01	\$8.78	\$9.93

		19	20	21	22	23	24
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm
Line Width	mm	1,750mm Wide	1,750mm Wide	3,000mm Wide	1,750mm Wide	3,000mm Wide	3,000mm Wide
Annual Capacity	TPY	1,000 TPY Line	750 TPY Line	2,250 TPY Line	500 TPY Line	2,250 TPY Line	1,500 TPY Line
Waste Gas Configuration		TOX2 RTO	TOX2 RTO	TOX1 TOX2	TOX2 RTO	TOX1	TOX1 TOX2
Het Recovery Used	?				HEAT RECOVERY		
Theoretical Minimum Power Input	kWh Par ka CE	1 00	5 53	4 55	6.44	4 55	5 23
Theoretical Minimum Total CO2 Emission	ka/hr CO2 Por ka CF	 2 A	2.55		0. 11 2.7		2.5
Theoretical Thermal Losses	kWh Por ka CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	ka / hr CF	138.9	104.2	312 5	69.4	312 5	208.3
Operating Power Input	kWh Per ka CF	52.7	52.2	42.1	49.9	44.0	45.8
Operating Total CO2 Emission	ka/hr CO2 Per ka CF	15.6	15.8	15.8	16.1	16.3	17.2
Operating Thermal Losses	kWh Por ka CF	12.0	13.0	11.1	15.1	11.3	11.0
Operating Total CO2 Emission	ka/hr CO2	2160 1	1650.6	4956.4	1124 7	5122 1	3592 5
	ky/iii 002	2100.1	1000.0		1124.1	U122.1	0002.0
CAPEX	USD \$ / ka CF	\$2.46	\$2.94	\$2.27	\$4.21	\$2.21	\$2.99
OPEX	USD \$ / kg CF	\$9.42	\$10.59	\$7.92	\$12.82	\$8.09	\$9.44
							•

		25	26	27	28	29	30
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm
Line Width	mm	3,000mm Wide	3,000mm Wide	1,750mm Wide	1,750mm Wide	1,750mm Wide	1,750mm Wide
Annual Capacity	TPY	1,500 TPY Line	1,000 TPY Line	1,000 TPY Line	750 TPY Line	500 TPY Line	1,000 TPY Line
Waste Gas Configuration		TOX1	TOX1 TOX2	TOX1 TOX2	TOX1 TOX2	TOX1	TOX1
Het Recovery Used	?					HEAT RECOVERY	
Theoretical Minimum Power Input	kWh Per kg CF	5.23	6.07	4.99	5.53	6.44	4.99
Theoretical Minimum Total CO2 Emission	kg/hr CO2 Per kg CF	2.5	2.6	2.4	2.5	2.7	2.4
Theoretical Thermal Losses	kWh Per kg CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	kg / hr CF	208.3	138.9	138.9	104.2	69.4	138.9
Operating Power Input	kWh Per kg CF	47.6	48.2	50.6	50.0	43.6	52.3
Operating Total CO2 Emission	kg/hr CO2 Per kg CF	17.8	18.3	18.3	18.5	18.9	19.0
Operating Thermal Losses	kWh Per kg CF	12.1	12.8	13.1	13.3	15.3	13.2
Operating Total CO2 Emission	kg/hr CO2	3722.3	2548.6	2557.6	1937.8	1316.0	2642.3
CAPEX	USD \$ / kg CF	\$2.92	\$3.86	\$2.58	\$3.08	\$4.43	\$2.50
OPEX	USD \$ / kg CF	\$9.62	\$11.45	\$9.82	\$10.97	\$13.07	\$9.98

		31	32	33	34	35	36
Retention Time Oxidation	Minutes	90	90	90	90	90	90
Retention Time LT Furnace	Seconds	90	90	90	90	90	90
Retention Time HT Furnace	Seconds	90	90	90	90	90	90
Tow Size and Tow Spacing	k on mm Spacing	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm	12k on 6mm
Line Width	mm	3,000mm Wide	1,750mm Wide	1,750mm Wide	1,750mm Wide	1,750mm Wide	1,750mm Wide
Annual Capacity	TPY	1,000 TPY Line	500 TPY Line	750 TPY Line	500 TPY Line	500 TPY Line	500 TPY Line
Waste Gas Configuration		TOX1	TOX1 TOX2	TOX1	TOX2 RTO	TOX1 TOX2	TOX1
Het Recovery Used	?		HEAT RECOVERY				
Theoretical Minimum Power Input	kWh Per kg CF	6.07	6.44	5.53	6.44	6.44	6.44
Theoretical Minimum Total CO2 Emission	kg/hr CO2 Per kg CF	2.6	2.7	2.5	2.7	2.7	2.7
Theoretical Thermal Losses	kWh Per kg CF	0.0	0.0	0.0	0.0	0.0	0.0
Carbon Fiber Output	kg / hr CF	138.9	69.4	104.2	69.4	69.4	69.4
Operating Power Input	kWh Per kg CF	50.0	47.2	51.6	66.4	63.8	65.5
Operating Total CO2 Emission	kg/hr CO2 Per kg CF	19.0	19.1	19.2	19.6	22.6	23.4
Operating Thermal Losses	kWh Per kg CF	13.0	15.4	13.4	15.9	16.2	16.3
Operating Total CO2 Emission	kg/hr CO2	2648.7	1334.3	2007.8	1369.2	1576.5	1630.4
CAPEX	USD \$ / kg CF	\$3.76	\$4.55	\$2.98	\$4.19	\$4.37	\$4.24
OPEX	USD \$ / kg CF	\$11.64	\$13.24	\$11.15	\$13.98	\$14.39	\$14.58

3000 TPY Capacity Options Overview and Cost Model Summary

arper

Data From Intertech Pira 2009 www.harperintl.com/resources

Future Line Capacity Evaluation Capacities (Cerca 2009): 1500 tpy to >2000+ tpy

Next Generation Line Capacities >3000 tpy (following the tendency for doubling of capacities)

Evaluated Scenarios for Next Generation Line Design

- Faster Lines, Existing Widths
- Novel Configurations (Multiple, Stacked Tow Bands)
- Wider Lines, Existing Speeds

Cost Differentials Must be Evaluated Against Developmental Risks

Block Diagram 1500 TPY – 3000mm Wide

Block Diagram 3000 TPY – 3000mm Wide

Block Diagram 3000 TPY – 3000mm Wide 2 Tow Bands (Stacked)

Block Diagram 30000 TPY – 6000mm Wide

System Design is Similar to 1500 TPY Plant, but Equipment is wider

Cost Model Output Assumptions / Inputs

Capacity carbon fiber at HT exit (mton/yr):	3m Wide	3m Wide x 2 Lines	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
Availability (hours/year):	7000	7000	7000	7000	7000
1000's of filaments per tow (K):	12	12	12	12	12
Tow spacing (mm):	6.0	6.0	6.0	6.0	6.0
Number of tows	475	475	475	475	950
Linear Density (gr / m tow)	1.66	1.66	1.66	1.66	1.66
Line speed (m/min)	9.1	18.2	18.2	9.1	9.1
Target Oxidation residence time (min)	90	90	90	180	90
Target LT residence time (sec)	90	90	90	90	90
Target HT residence time (sec)	90	90	90	90	90
Oxidation oven feed rate (kg/hr)	428.5	857.0	857.0	857.0	857.0
Oxidation exit mass rate (kg/hr)	407.1	814.2	814.2	814.2	814.2
LT exit mass rate (kg/hr)	252.4	504.8	504.8	504.8	504.8
Carbon fiber HT exit mass rate (kg/hr)	214.3	428.6	428.6	428.6	428.6
Number of Ovens	3	3	6	6	3
Estimated tow-band width (mm):	2850	2850	2850	2850	5700
Number of Control Zones in Oven Set	6	6	12	12	6
Design - Total Heated Length - (m):	840	840	1681	1681	840
Actual Oven Residence (@ system speed) (min):	93	46	93	185	93
LT Heated length (m)	14.3	14.3	28.6	14.3	14.3
LT Number of Control Zones	7	7	14	7	7
Actual LT Residence (@ system speed) (sec):	94	47	94	94	94
HT Heated length (m)	13.7	13.7	27.5	13.7	13.7
HT Number of Control Zones	8	8	16	8	8
Actual HT Residence (@ system speed) (sec):	91	45	91	91	91

Cost Model Output Scale Up (3000 TPY) Scenarios - Utilities List

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Power	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
CF Production (kg/hr)	214.3	428.6	428.6	428.6	428.6
	44000		07540	0.4500	0.4000
l otal Installed Power (Line Load)	14683	29366	2/540	24582	24903
kw/kg (based on Installed)	68.5	68.5	64.3	57.4	58.1
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	7250	14501	13263	11045	11133
kW/kg (Nominal) with Recuperation	33.8	33.8	30.9	25.8	26.0
Heat Recovery Present (1/0 = yes/no)	1	1	1	1	1
Heat Recuperation Possible (kW)	5016	10032	9856	9856	10059
kw/kg (Installed Net) with Recuperation	45.1	45.1	41.3	34.4	34.6
Creels (kW)	50	99	50	50	99
Pretreatment (kW)	5	9	7	7	14
Oxidation Ovens (kW)	5255	10510	10510	10510	6155
LT Furnace (kW)	1051	2102	1908	1051	1908
HT Furnace (kW)	2337	4674	4437	2337	4437
Surface Treatment - Elect., Wash, Dry (kW)	738	1477	1159	1159	1818
Surface Treatment - Sizing & Drying (kW)	771	1542	1210	1210	1899
Thermal Oxidizer 1 (kW)	4090	8181	7761	7761	7913
Thermal Oxidizer 2 (kW)	0	0	0	0	0
Winding (kW)	124	248	124	124	248
Tensioners (Assumed) (kW)	263	525	375	375	412
Total (kW) with Recuperation	9667	19335	17684	14726	14844
					# Antonio and

Cost Model Output Scale Up (3000 TPY) Scenarios OPEX Est.

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Operating Cost (OPEX)	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
CF Production (kg/hr)	214.3	428.6	428.6	428.6	428.6
Operating Hours Per Year	7,000	7,000	7,000	7,000	7,000
Heat Recovery Present? (1/0 = Yes/No)	1	1	1	1	1
Nominal Consumption Efficency	75.0%	75.0%	75.0%	75.0%	75.0%
Nominal Consumption (kW) with Recuperation	7250.5	14501.0	13263.1	11044.8	11133.0
kW/kg (Nominal) with Recuperation	33.8	33.8	30.9	25.8	26.0
As Electricity (kW)	4684.8	9369.6	8221.4	6003.1	5987.8
As Natural Gas (kW)	2,565.7	5131.4	5.041.7	5.041.7	5.145.2
Electrical Cost (USD/kW)	\$0.05	\$0.05	\$0.05	\$0.05	\$0.05
Natural Gas Cost (USD/kW)	\$0.10	\$0.10	\$0.10	\$0.10	\$0.10
, , , ,			-		
Nitrogen Consumption (Nm3/hr)	1,909.5	3819.0	2,700.0	2,700.0	3,818.3
Nitrogen Cost (USD/hr)	\$74.94	\$149.88	\$105.97	\$105.97	\$149.85
Operators	50.0	119.0	0.93	101.0	101.0
Cost Per Operator (USD/year)	\$100.000	110.0 \$100.000	¢100.0	¢100.00	¢100.000
Total Operator Cost Per Year (USD/year)	\$100,000 \$5,900,000	\$100,000 \$11,800,000	000,000 000 000 €	\$100,000 \$10,100,000	\$100,000 \$10,100,000
Minutes Per Creel (Minutes)	2.8	¥11,000,000 1.4	40,000,000 1 4	¥10,100,000 1.4	¥10,100,000 1.4
Minutes Per Package (Product)	42 N	21.0	21 በ	21.0	21.0
initiates i el l'actuage (l'iouado)	12.0	21.0	21.0	21.0	21.0
Kilograms Per Year	1,500,000	3,000,000	3,000,000	3,000,000	3,000,000
Cost Electricity (USD/year)	\$1,639,676	\$3,279,353	\$2,877,487	\$2,101,088	\$2,095,726
Cost Natural Gas (USD/year)	\$1,795,986	\$3,591,972	\$3,529,167	\$3,529,167	\$3,601,646
Cost Nitrogen (USD/year)	\$656,485	\$1,312,970	\$928,259	\$928,259	\$1,312,712
Cost Operators (USD/year)	\$5,900,000	\$11,800,000	\$6,600,000	\$10,100,000	\$10,100,000
Total Cost (USD/year)	\$11,492,148	\$22,984,295	\$16,934,912	\$19,658,513	\$20,110,084
Cost Electricity (USD/kg)	\$1 na	¢1 ∩0	ao n⊅	¢n 7n	\$∩ 7∩
Cost Natural Gas (USD/kg)	\$1.05 \$1.20	\$1.03 €1.20	ው.30 ድ1 10	φυ.ru ¢ 1 1Ω	φυ.70 \$1.20
Cost Nitrogen (USD/kg)	\$1.20 \$1.44	ቁ 1.20 ቁበ <i>44</i>	ቁo ⊄በ ጋ1	∳1.10 ⊄በ 21	ቁ 1.20 \$በ 44
Cost Operators (USD/kg)	\$3.93	\$t3 a3 ⊅0.44	\$0.01 \$0.01	\$0.31 \$2.37	\$3.37
Total Cost (USD/kg)	\$7.66	\$7.66	\$5.84	\$8.55	\$8.70
l otal Cost (USD/kg)	\$7.66	\$7.66	\$5.64	\$6.55	\$6.7U

וווששלם

Cost Model Output Scale Up (3000 TPY) Scenarios Total Cost

	3m Wide	3m Wide	3m Wide - Faster	3m Wide x 2 Tow	6m Wide
Total Cost Model	1500 TPY	3000tpy w / 2X	3000tpy	3000tpy	3000tpy
Cost PAN (USD/kg PAN)	\$3.00	\$3.00	\$3.00	\$3.00	\$3.00
Cost Pan / kg CF (USD / kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost PAN (USD/yr)	\$8,998,902	\$17,997,804	\$17,997,804	\$17,997,804	\$17,997,804
Cost CAPEX (USD) / Per Line	\$44,871,000	\$89,742,000	\$61,296,000	\$79,343,000	\$81,925,000
CAPEX Cost Factor (Over 1500 tpy line)		2.00	1.37	1.77	1.83
Systems Required for Desired Total Capacity	2	1	1	1	1
Infrastructure (fx CAPEX)	2.5	2.5	2.5	2.5	2.5
Infrastructure (USD)	\$112,177,500	\$224,355,000	\$153,240,000	\$198,357,500	\$204,812,500
Building Dimensions Length (m) - Estimated	300	300	500	360	380
Building Dimensions Width (m) - Estimated	40	80	40	40	70
Building Dimensions Foot Print (m2) - Estimated	12,000	24,000	20,000	14,400	26,600
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$3.41	\$3.41	\$2.33	\$3.02	\$3.12
Cost Infrastructure (USD/kg CF)	\$2.99	\$2.99	\$2.04	\$2.64	\$2.73
Cost OPEX (USD/kg CF)	\$7.66	\$7.66	\$5.64	\$6.55	\$6.70
Total Cost (USD/kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55

CUMMULATIVE Total Cost Model					
Total Cost (USD / kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55
Cost PAN (USD/kg CF)	\$6.00	\$6.00	\$6.00	\$6.00	\$6.00
Cost CAPEX (USD/kg CF)	\$9.41	\$9.41	\$8.33	\$9.02	\$9.12
Cost Infrastructure (USD/kg CF)	\$12.40	\$12.40	\$10.37	\$11.66	\$11.84
Cost OPEX (USD/kg CF)	\$20.06	\$20.06	\$16.02	\$18.21	\$18.55
Cost PAN (%)	29.9%	29.9%	37.5%	32.9%	32.3%
Cost CAPEX (%)	46.9%	46.9%	52.0%	49.5%	49.2%
Cost Infrastructure (%)	61.8%	61.8%	64.8%	64.0%	63.9%
Cost OPEX (%)	100.0%	100.0%	100.0%	100.0%	100.0%

Future Line Capacity Evaluation

For Next Generation, Cost differential has been estimated via Cost Modeling:

- Multiple of Current State of the Art Line
- Faster Lines, Existing Widths
- Novel Configurations (Multiple Tow Bands)
- Wider Lines, Existing Speeds

Capex Total (2x) 100% (1.37x) 79.8% (1.77x) 90.8% (1.83x) 92.4%

Wider Lines and Stacking offer reduction of Consumed Energy, but large Benefits through Faster Velocities

